Code: 20EE4601A

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

DISTRIBUTION SYSTEM PLANNING & AUTOMATION (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Explain the factors affecting load	L2	CO2	7 M			
		forecasting and how they categorized as						
		short term or long term load forecasting?						
	b)	Discuss the distribution system planning for	L2	CO2	7 M			
		the future.						
OR								
2	a)	Explain Central role of the computer in	L2	CO2	7 M			
		distribution planning with a neat schematic						
		diagram.						
	b)	What are the factors influence substation	L4	CO2	7 M			
		site selections? Also explain the concept of						
		substation expansion.						

_		UNIT-II			
3	a)	What are the different distribution substation bus schemes? Explain them with	L4	CO3	7 M
		a neat sketch.			
	b)	Discuss the requirements of substation	L2	CO3	7 M
		location. Also list the rules for ideal location			
		for a substation.			
		OR			
4	a)	Describe how rating of a distribution	L4	CO3	7 M
		substation can be done? Explain it by			
		considering square shaped distribution			
		substation service area.			
	b)	Compare the four and six feeder patterns.	L3	CO3	7 M
		Also describe how much percentage of			
		excessive loads can be carried by six feeder			
		patterns when compared to four feeder			
		patterns.			
		UNIT-III			
5	a)	With a neat sketch describe the operation of	L3	CO3	7 M
		loop type primary feeder.			
	b)	Discuss the different architectures of radial	L2	CO3	7 M
		type primary feeders in detail.			
		OR			
6	a)	What are the factors affecting the design	L2	CO3	7 M
		loading of a feeder? Discuss them in brief.			
	b)	Derive the expression for total series voltage	L3	CO3	7 M
		drop of a radial feeder with non-uniformly			
		distributed load.			

	UNIT-IV							
7	a)	Explain the different problems exist for	L2	CO4	7 M			
		distribution system.						
	b)	Discuss the functions of distribution	L2	CO4	7 M			
		automation.						
	OR							
8	a)	What is the purpose of Remote Terminal	L2	CO4	7 M			
		Unit (RTU) in distribution automation?						
		Explain in detail.						
	b)	Explain in detail how the voltage profile can	L4	CO5	7 M			
		be improved in distribution system.						
UNIT-V								
9	a)	What is SCADA? Explain its operation with	L4	CO4	7 M			
		a simple block diagram.						
	b)	Why should Distribution Automation (DA)	L4	CO4	7 M			
		be integrated with SCADA? Explain its						
		advantages.						
	OR							
10	a)	Define communication protocol and explain	L4	CO5	7 M			
		Remote Procedure Call in detail.						
	b)	What is the requirement and feasibility of	L2	CO4	7 M			
		SCADA to distribution automation? Discuss						
		in detail.						